说明:集合卡尔曼粒子滤波算法matlab代码,能处理非高斯、非线性、多维状态的情况
说明:集合卡尔曼滤波(EnKF) 数据同化方法可以避免了EKF中协方差演变方程预报过程中出现的计算不准确和关于协方差矩阵的大量数据的存储问题,最主要的是可以有效的控制估计误差方差的增长,改善预报的效果。
说明:无迹卡尔曼滤波UKF摒弃了对非线性函数进行线性化的传统做法,采用卡尔曼线性滤波框架,对于一步预测方程,使用无迹变换UT来处理均值和协方差的非线性传递问题。UKF算法是对非线性函数的概率密度分布进行近似,用一系列确定样本来逼近状态的后验概率密度,而不是对非线性函数进行近似,不需要对Jacobian矩阵...