说明:资源描述采用matlab语言编写,案例中K=4,对二维数据分成4个类,聚类效果很好。k-means在输入样本数据不大的时候聚类速度和聚类效果都很好
matlab 算法 KMeans
说明:利用HOG算法实现行人检测功能,需要的数据都以*.dat提供,正负训练样本数据不提供,自己训练好后加入到工程中就可以对静态图片中的行人进行检测。
matlab 检测 hog 行人
说明:聚类 神经网络例程,提供数据样本,且说明清晰。
聚类神经网络 聚类-matlab 数据聚类 神经网络聚类
说明:采用动量梯度下降算法训练 BP 网络。 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。
BP 网络 贝叶斯正则化算法 L-M 优化算法 trainlm 贝叶斯正则化算法 trainbr 白噪声
说明:采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正 则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。
贝叶斯正则化算法 BP网络 L-M算法 trainlm 贝叶斯正则化算法 trainbr BP
说明:采用贝叶斯正则化算法提高 BP 网络的推广能力。 在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。
Trainlm BP-noise 贝叶斯正则化 L-M优化bp
说明:信源函数 randerr 产生比特误差样本 randint 产生均匀分布的随机整数矩阵 randsrc 根据给定的数字表产生随机矩阵 wgn 产生高斯白噪声 信号分析函数 biterr 计算比特误差数和比特误差率 eyediagram 绘制眼图 scatterplot 绘制分布图 symerr ...
分组码 BCH-最小距离 最小量化误差 量化控制 矩阵转换器
说明:采用遗传算法对男女生样本数据中的身高,体重,喜欢数学,喜欢文学,喜欢运动,喜欢模式识别共6个特征进行特征选择,并基于所得到的最佳特征采用SVM设计男女生分类器,并计算模型预测性能(包含SE,SP,ACC和AUC )。要求自行编写代码实现遗传算法。
遗传算法 SVM 分类器 SE SP ACC AUC
说明:采用遗传算法对男女生样本数据中的身高,体重,喜欢数学,喜欢文学,喜欢运动,喜欢模式识别共6个特征进行特征选择,并基于所得到的最佳特征采用SVM设计男女生分类器,并计算模型预测性能(包含SE,SP,ACC和AUC )。提示:可以用6位的0/1进行编码,适应度函数可以考虑类似 。
AUC-SVM 特征选择算法 男女生分类器 svm-auc svm识别分类
说明:保证准确无误,是学习通信的好帮手,一种噪声辅助数据分析方法,包含特征值与特征向量的提取、训练样本以及最后的识别,使用混沌与分形分析的例程,外文资料里面的源代码,部分实现了追踪测速迭代松弛算法。
算法 函数 一个 例子 最小 粒子