说明:wine数据来源是UCI数据库,记录的是意大利统一地域上三种不同葡萄酒化学成分分析,数据含有178样本,每个样本含有13个特征分量,每个样本类别都有各自标签,178样本50%做训练集,另外50%做预测集,将训练集SVM分类建模
说明:对于一个两类分类问题,当n=100时候,用mvnrnd()函数随机产生两类样本;每一类的样本容量不小于100;2)设计最大似然估计算法对两类类条件概率密度函数进行估计;3)设计非参数估计算法对两类的类条件概率密度进行估计(任选Parzen窗法或kn-近邻法之一),并分析样本数量、窗宽、k等因素对概率...
说明:bagging 集成算法描述:Bagging是一种把多个不同的弱学习器训练成一个强学习器的集成学习方法Bagging是一种并行训练过程,通过分类测试样本的有放回抽样,获取多个分类测试子样本,通过分类子样本训练T个基分类器,当对每一个实例进行分类时,分别调用这T个基分类器,得到T个结果,最后对分类问题...