K_均值聚类算法(原理加程序代码)我要分享

K_ Mean clustering algorithm (principle plus program code)

matlab 算法 代码 程序 原理 均值

关注次数: 305

下载次数: 0

文件大小: 8.13 kB

代码分类: 其他

开发平台: matlab

下载需要积分: 2积分

版权声明:如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

代码描述

中文说明:用matlab编写的k均值聚类程序,可直接运行调用-Prepared by the MATLAB K mean clustering procedures, can be directly run callK-均值聚类算法  1.初始化:选择c个代表点,...,,321cpppp 2.建立c个空间聚类表:CKKK...,21  3.按照最小距离法则逐个对样本X进行分类:  ),(),,(min argJii Kxaddpxj   4.计算J及用各聚类列表计算聚类均值,并用来作为各聚类新的代表点(更新代表点)  5.若J不变或代表点未发生变化,则停止。否则转2.K-均值聚类算法  1.初始化:选择c个代表点,...,,321cpppp 2.建立c个空间聚类表:CKKK...,21  3.按照最小距离法则逐个对样本X进行分类:  ),(),,(min argJii Kxaddpxj   4.计算J及用各聚类列表计算聚类均值,并用来作为各聚类新的代表点(更新代表点)  5.若J不变或代表点未发生变化,则停止。否则转2.K-均值聚类算法  1.初始化:选择c个代表点,...,,321cpppp 2.建立c个空间聚类表:CKKK...,21  3.按照最小距离法则逐个对样本X进行分类:  ),(),,(min argJii Kxaddpxj   4.计算J及用各聚类列表计算聚类均值,并用来作为各聚类新的代表点(更新代表点)  5.若J不变或代表点未发生变化,则停止。否则转2.K-均值聚类算法  1.初始化:选择c个代表点,...,,321cpppp 2.建立c个空间聚类表:CKKK...,21  3.按照最小距离法则逐个对样本X进行分类:  ),(),,(min argJii Kxaddpxj   4.计算J及用各聚类列表计算聚类均值,并用来作为各聚类新的代表点(更新代表点)  5.若J不变或代表点未发生变化,则停止。否则转2.K-均值聚类算法 1.初始化:选择c个代表点,...,,321cppp


English Description:

The K-means clustering program written in Matlab can directly run and call - prepared by the MATLAB K-means clustering procedures, can be directly run call - means clustering algorithm 1. Initialization: select c representative points,..., 321cpppp 2. Establish C spatial clustering tables: ckkk..., 21 & nbsp; 3. Classify sample x one by one according to the minimum distance rule: & nbsp;), (),, (min argji kxaddpxj  & nbsp; 4. Calculate J and calculate the cluster mean value with each cluster list, and use it as the new representative point of each cluster (update representative point) & nbsp; 5. If J does not change or the representative point does not change, stop. Otherwise, turn to 2. K-means clustering algorithm & nbsp; 1. Initialization: select c representative points,..., 321cpppp 2. Establish C spatial clustering tables: ckkk..., 21 & nbsp; 3. Classify sample x one by one according to the minimum distance rule: & nbsp;, (), (min argji kxaddpxj   & nbsp; 4. Calculate J and use each clustering list to calculate the clustering mean, and use it as the new representative points of each cluster (update representative points) &If J does not change or the representative point does not change, stop. Otherwise, turn to 2. K-means clustering algorithm & nbsp; 1. Initialization: select c representative points,..., 321cpppp 2. Establish C spatial clustering tables: ckkk..., 21 & nbsp; 3. Classify sample x one by one according to the minimum distance rule: & nbsp;, (), (min argji kxaddpxj   & nbsp; 4. Calculate J and use each clustering list to calculate the clustering mean, and use it as the new representative points of each cluster (update representative points) &If J does not change or the representative point does not change, stop. Otherwise, turn to 2. K-means clustering algorithm & nbsp; 1. Initialization: select c representative points,..., 321cpppp 2. Establish C spatial clustering tables: ckkk..., 21 & nbsp; 3. Classify sample x one by one according to the minimum distance rule: & nbsp;, (), (min argji kxaddpxj   & nbsp; 4. Calculate J and use each clustering list to calculate the clustering mean, and use it as the new representative points of each cluster (update representative points) &If J does not change or the representative point does not change, stop. Initialization: select c representative points,..., 321cppp


代码预览