说明:本系统设计并实现了一种基于色度空间的最邻近n帧改进算法,以提高传统混合高斯模型的目标检测效果。当光照发生突然变化时,利用像素点的色度信息代替RGB值,有效避免亮度突变的干扰;为了反映背景的动态变化,检测系统使用各高斯分布在最近n帧与像素点测量值的匹配次数的指数函数实现权重值的更新。
说明:K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大,算法过程如下: 输入:k, data[n]; (1) 选择k个初始中心点,例如c[0]=data[0],…c[k-1]=data[k-1]; (2) ...
说明:应用背景关键技术该算法对 松散关系;K近邻分类器,一个流行的 ;机器学习 ;分类,经常混淆技术k-均值 ;因为 ;K ;在名称。可以将近邻分类器对 得到的聚类中心;k-均值将新数据到现有的集群。这就是最近的质心分类器 ; ;或Rocchio算法。