说明:对信号进行频谱分析及滤波,有循环检测,周期性检测,相关分析过程的matlab方法,做视觉测量的上位机代码,采用加权网络中节点强度和权重都是幂率分布的模型,关于神经网络控制。
说明:用PCA来抽取人脸特征,在降低维数的同时,在一定程度上去除原始特征各维之间的相关性。每个人选取五张为实验的数据集。
说明:KNN-KSR方法是一种不直接建立自变量与因变量间数学关系去预测因变量的方法。该方法基于以下两个假设:(1)在所选择的样本描述指标信息足够完备时,性质越相似的样本在同类指标间的空间分布越接近,否则其空间距离也越大;(2)如果两类指标间存在较大关联度,则样本分别在两类指标内的空间分布也具有较大相似性。...
说明:在道路图像中, 大部分图像信息对于车道线检测是无用 的, 通过寻找对车道线检测有用的感兴趣区域, 不但可以降低 算法的运算量, 而且能简化车道线的识别。为了提高算法的实时性, 算法还可 以采用动态改变感兴趣区域大小的方法。如果算法识别出的 道路边界可信度较高时, 可进一步缩小感兴趣区域; 而...
说明:DTW是较早的一种模式匹配和模型训练技术,它应用动态规划的思想成功解决了语音信号特征参数序列比较时时长不等的难题,在孤立词语音识别中获得了良好性能。虽然HMM模型和ANN在连续语音大词汇量语音识别系统优于DTW,但由于DTW算法计算量较少、无需前期的长期训练,也很容易将DTW算法移植到单片机、DSP...
说明:在声学事件检测中, 采用基于短时能量和短时过零率的端点检测方法和基于动态时间规整算法的情况下, 对鸟叫声、 人说话声和车辆驶过声这三类声学事件进行检测。 在不加噪声的情况下, 基于时域特征的识别准确率是88.89%, 基于频域的识别准确率是83.33%, 基于时频域特征的识别准确率是77.78%。 ...
说明:经验模态分解(Empirical Mode Decomposition,简称EMD))方法被认为是2000年来以傅立叶变换为基础的线性和稳态频谱分析的一个重大突破 [1] ,该方法是依据数据自身的时间尺度特征来进行信号分解,无须预先设定任何基函数。这一点与建立在先验性的谐波基函数和小波基函数上的傅...