说明:模糊聚类是一种重要数据分析和建模的无监督方法.在FCM算法中,考虑到样本矢量中各维特征对模式分类的不同影响,本文提出一种优化特征加权的模糊聚类算法,该算法利用主成分分析法提取主要特征向量并根据其对方差的贡献率不同赋予相应权重进行聚类分析.
说明:DE 算法主要用于求解连续变量的全局优化问题,其主要工作步骤与其他进化算法基本一致,主要包括变异(Mutation)、交叉(Crossover)、选择(Selection)三种操作。算法的基本思想是从某一随机产生的初始群体开始,利用从种群中随机选取的两个个体的差向量作为第三个个体的随机变化源,将差向...