说明:改进的蚁群算法,加入了变异因子,产生变异,从而更快的收敛。
说明:该算法,解决了不收敛的问题,聚类效果非常好(效果图如附件图片所示)。改进的蚁群算法是基于遗传算法的改进,在基本遗传算法的基础之上,加入了变异因子,产生变异,从而更快的收敛。
说明:遗传算法多目标优化matlab代码,亲测可用
说明:考虑了孤岛型微电网的灵活性,在成本最低的条件下,进行优化调度。
说明:遗传算法是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。遗传算法通常实现方式为一种计算机模拟。对于一个最优化问题,一定数量的候选解(称为个体)的抽象表示(称为染色体)的种群向更好的解进化。传统...
说明:模拟退火是 80 年代初发展起来的一种随机性组合优化方法。它模拟高温金属降温的热力学过程,并广泛应用于组合优化问题。基于模拟退火的粒子群优化算法是把模拟退火机制引入基本粒子群优化算法中,采用杂交粒子群优化算法中的杂交运算和带高斯变异的粒子群优化算法中的变异运算,以便进一步调整优化群体。
说明:基于遗传算法的改进,在基本遗传算法的基础之上,加入了变异因子,产生变异,从而更快的收敛。