说明:若要解决多类问题纠错输出编码结合 Adaboost prouve 其鲁棒性,以处理这些问题。作为编码矩阵 M * N 定义、 被 M 是班级,数目,N 是弱分类器的数目。每一行表示为类码字。矩阵是用 OneVsOne 方法,编码和解码海明距离。Adaboost 被定义为促进弱分类器。
说明:旋转森林最近热门的集成学习分类方法,可用于模式识别分类。当输入数据中存在非线性关系的时候,基于线性回归的模型就会失效,而基于树的算法则不受数据中非线性关系的影响,基于树的方法最大的一个困扰时为了避免过拟合而对树进行剪枝的难度,对于潜在数据中的噪声,大型的树倾向于受影响,导致低偏差(过度拟合)或高方差...