随机森林算法在图像特征分类回归中的应用我要分享

Random forest algorithm in image feature classification the application of the regression

森林算法 图像特征 神经网络

关注次数: 357

下载次数: 0

文件大小: 264KB

代码分类: 图像处理

开发平台: matlab

下载需要积分: 1积分

版权声明:如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

代码描述

中文说明:

随机森林算法在图像特征分类回归中的应用,通过结合神经网络进行更好的特征数据处理。


English Description:

Random forest algorithm in the application of image feature classification regression, and by combining the characteristics of the neural network for better data processing.


代码预览

adaboost and rbf

................\abr_v1

................\......\@adabooster

................\......\...........\adabooster.m

................\......\...........\calc_output.m

................\......\...........\calc_output_step.m

................\......\...........\calc_output_steps.m

................\......\...........\comp_distr.m

................\......\...........\comp_weight.m

................\......\...........\CVS

................\......\...........\...\Entries

................\......\...........\...\Repository

................\......\...........\...\Root

................\......\...........\display.m

................\......\...........\do_learn.m

................\......\...........\finish_learn.m

................\......\...........\get_class_errors_step.m

................\......\...........\get_last_distr.m

................\......\...........\get_use_sign_output.m

................\......\...........\init_learn.m

................\......\...........\private

................\......\...........\.......\CVS

................\......\...........\.......\...\Entries

................\......\...........\.......\...\Repository

................\......\...........\.......\...\Root

................\......\...........\.......\equal.m

................\......\...........\.......\erfunc.m

................\......\...........\.......\fmin.m

................\......\...........\.......\sigmoid.m

................\......\...........\report.m

................\......\...........\set_last_distr.m

................\......\...........\set_use_sign_output.m

................\......\...........\subsasgn.m

................\......\...........\subsref.m

................\......\@adabooster_regul

................\......\.................\adabooster_regul.m

................\......\.................\boost_func.m

................\......\.................\boost_func_der.m

................\......\.................\comp_distr.m

................\......\.................\comp_weight.m

................\......\.................\CVS

................\......\.................\...\Entries

................\......\.................\...\Repository

................\......\.................\...\Root

................\......\.................\display.m

................\......\.................\do_learn.m

................\......\.................\get_fin_hyp.m

................\......\.................\get_infl.m

................\......\.................\get_phi.m

................\......\.................\get_vi.m

................\......\.................\private

................\......\.................\.......\CVS

................\......\.................\.......\...\Entries

................\......\.................\.......\...\Repository

................\......\.................\.......\...\Root

................\......\.................\.......\equal.m

................\......\.................\.......\erfunc.m

................\......\.................\.......\fmin.m

................\......\.................\.......\sigmoid.m

................\......\.................\set_fin_hyp.m

................\......\.................\set_infl.m

................\......\.................\subsasgn.m

................\......\.................\subsref.m

................\......\@booster_base

................\......\.............\booster_base.m

................\......\.............\CVS

................\......\.............\...\Entries

................\......\.............\...\Repository

................\......\.............\...\Root

................\......\.............\display.m

................\......\.............\get_boosted_learner.m

................\......\.............\get_boost_steps.m

................\......\.............\get_param.m

................\......\.............\get_proto.m

................\......\.............\get_vote_weight.m

................\......\.............\get_vote_weights.m

................\......\.............\set_boosted_learner.m

................\......\.............\set_boost_steps.m

................\......\.............\set_param.m

................\......\.............\set_proto.m

................\......\.............\set_vote_weights.m

................\......\.............\subsasgn.m

................\......\.............\subsref.m

................\......\.............\train_weak.m

................\......\@data

................\......\.....\check_std.m

................\......\.....\consistent.m

................\......\.....\data.asv

................\......\.....\data.m

................\......\.....\display.m

................\......\.....\get_idim.m

................\......\.....\get_name.m

................\......\.....\get_nsname.m

................\......\.....\get_odim.m

................\......\.....\get_sname.m

................\......\.....\get_test.m

................\......\.....\get_test_size.m

................\......\.....\get_train.m

................\......\.....\get_train_size.m

................\......\.....\get_val.m