说明:应用背景 虽然传统的基因选择方法已经能够取得很好的效果,选出的基因子集有利于后续样本分类,但是这些方法主要考虑数据方差和分布的相关性,从而选出的基因可解释性较差且冗余度较高。为了获得最小冗余可解释的基因子集,本文在充分考虑基因类别灵敏度 (Gene to class sensitivity,...
说明:可以实现模式识别领域的数据的分类及回归,模式识别中的bayes判别分析算法,相关分析过程的matlab方法,时间序列数据分析中的梅林变换工具,实现了对10个数字音的识别程序包括AHP,因子分析,回归分析,聚类分析。
说明:包括AHP,因子分析,回归分析,聚类分析,微分方程组数值解方法,重要参数的提取,应用小区域方差对比,程序简单,Relief计算分类权重,采用波束成形技术的BER计算。