说明:非常全面的灵敏度分析讲解以及灵敏度检验案例。
说明:本章介绍两种非线性Kalman滤波器[15-17],一种是扩展Kalman滤波器(Extended Kalman Filter,简称EKF),其基本思想是利用泰勒展开,将非线性方程直接线性化。线性化后的系统模型和系统实际的非线性模型会有差别,非线性越强,差别就会越大。不过,EKF的优势也不容忽视,由...
说明:无迹卡尔曼滤波UKF摒弃了对非线性函数进行线性化的传统做法,采用卡尔曼线性滤波框架,对于一步预测方程,使用无迹变换UT来处理均值和协方差的非线性传递问题。UKF算法是对非线性函数的概率密度分布进行近似,用一系列确定样本来逼近状态的后验概率密度,而不是对非线性函数进行近似,不需要对Jacobian矩阵...
说明:各种灵巧噪声干扰(卷积,假目标,C&I等)仿真及论文; 以及抗干扰的一些算法程序。
说明:KNN-KSR方法是一种不直接建立自变量与因变量间数学关系去预测因变量的方法。该方法基于以下两个假设:(1)在所选择的样本描述指标信息足够完备时,性质越相似的样本在同类指标间的空间分布越接近,否则其空间距离也越大;(2)如果两类指标间存在较大关联度,则样本分别在两类指标内的空间分布也具有较大相似性。...
说明:处理非线性问题时,通常的处理方法是利用线性化技巧将非线性滤波问题转化为一个近似的线性滤波问题,套用线性滤波理论得到求解原非线性滤波问题的次优滤波算法,其中最常用的线性化方法是泰勒级数展开,所得到的滤波方法是扩展卡尔曼滤波(EKF)