稀疏自编码器和分类器实现结合我要分享

Combination of sparse self encoder and classifier

自编码器 分类器实现结合 self-taught-learning

关注次数: 430

下载次数: 4

文件大小: 9012KB

代码分类: Simulink仿真

开发平台: matlab

下载需要积分: 1积分

版权声明:如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

代码描述

中文说明:

自主学习把稀疏自编码器和分类器实现结合。先通过稀疏自编码对无标签的5-9的手写体进行训练得到最优参数,然后通过前向传播,得到训练集和测试集的特征,通过0-4有标签训练集训练出softmax模型,然后输入测试集到分类模型实现分类。


English Description:

Autonomous Learning combines sparse self coder with classifier. Firstly, the unlabeled 5-9 handwriting is trained by sparse self coding to obtain the optimal parameters, and then the characteristics of the training set and test set are obtained by forward propagation. The softmax model is trained by 0-4 labeled training set, and then the test set is input into the classification model to realize classification


代码预览

self-taught learning

....................\display_network.m

....................\feedForwardAutoencoder.m

....................\initializeParameters.m

....................\loadMNISTImages.m

....................\loadMNISTLabels.m

....................\mnist-train-images.idx3-ubyte

....................\mnist-train-labels.idx1-ubyte

....................\softmaxCost.m

....................\softmaxPredict.asv

....................\softmaxPredict.m

....................\softmaxTrain.m

....................\sparseAutoencoderCost.m

....................\stlExercise.asv

....................\stlExercise.m