NMFs算法(带稀疏度约束的非负稀疏矩阵分解)我要分享

NMFS algorithm (nonnegative sparse matrix factorization with sparsity constraint)

矩阵降维 局部特征分解 recognition-faces 降维 face-features-matlab

关注次数: 405

下载次数: 0

文件大小: 22.26M

代码分类: 图像处理

开发平台: matlab

下载需要积分: 1积分

版权声明:如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

代码描述

中文说明:NMFs算法(带稀疏度约束的非负稀疏矩阵分解)用于实现基于人脸局部特征的人脸识别,通过近似的矩阵分解进行空间降维。


English Description:

NMFS (nonnegative sparse matrix factorization with sparsity constraint) is used to realize face recognition based on local features of human face, and spatial dimension is reduced by approximate matrix decomposition.


代码预览

nmfpack

.......\code

.......\....\cbcldata.m

.......\....\lnmf.m

.......\....\main.m

.......\....\natdata.m

.......\....\nmfdiv.m

.......\....\nmfmse.m

.......\....\nmfsc.m

.......\....\orldata.m

.......\....\pgma_read.m

.......\....\projfunc.m

.......\....\projtest.m

.......\....\sampleimages.m

.......\....\snmf.m

.......\....\visual.m

.......\data

.......\....\cbcl-face-database

.......\....\IMAGES.mat

.......\....\orl-faces

.......\....\.........\htm" target=_blank>README

.......\....\.........\s1

.......\....\.........\..\1.pgm

.......\....\.........\..\10.pgm

.......\....\.........\..\2.pgm

.......\....\.........\..\3.pgm

.......\....\.........\..\4.pgm

.......\....\.........\..\5.pgm

.......\....\.........\..\6.pgm

.......\....\.........\..\7.pgm

.......\....\.........\..\8.pgm

.......\....\.........\..\9.pgm

.......\....\.........\s10

.......\....\.........\...\1.pgm

.......\....\.........\...\10.pgm

.......\....\.........\...\2.pgm

.......\....\.........\...\3.pgm

.......\....\.........\...\4.pgm

.......\....\.........\...\5.pgm

.......\....\.........\...\6.pgm

.......\....\.........\...\7.pgm

.......\....\.........\...\8.pgm

.......\....\.........\...\9.pgm

.......\....\.........\...\jpg

.......\....\.........\s11

.......\....\.........\...\1.pgm

.......\....\.........\...\10.pgm

.......\....\.........\...\2.pgm

.......\....\.........\...\3.pgm

.......\....\.........\...\4.pgm

.......\....\.........\...\5.pgm

.......\....\.........\...\6.pgm

.......\....\.........\...\7.pgm

.......\....\.........\...\8.pgm

.......\....\.........\...\9.pgm

.......\....\.........\s12

.......\....\.........\...\1.pgm

.......\....\.........\...\10.pgm

.......\....\.........\...\2.pgm

.......\....\.........\...\3.pgm

.......\....\.........\...\4.pgm

.......\....\.........\...\5.pgm

.......\....\.........\...\6.pgm

.......\....\.........\...\7.pgm

.......\....\.........\...\8.pgm

.......\....\.........\...\9.pgm

.......\....\.........\s13

.......\....\.........\...\1.pgm

.......\....\.........\...\10.pgm

.......\....\.........\...\2.pgm

.......\....\.........\...\3.pgm

.......\....\.........\...\4.pgm

.......\....\.........\...\5.pgm

.......\....\.........\...\6.pgm

.......\....\.........\...\7.pgm

.......\....\.........\...\8.pgm

.......\....\.........\...\9.pgm

.......\....\.........\s14

.......\....\.........\...\1.pgm

.......\....\.........\...\10.pgm

.......\....\.........\...\2.pgm

.......\....\.........\...\3.pgm

.......\....\.........\...\4.pgm

.......\....\.........\...\5.pgm

.......\....\.........\...\6.pgm

.......\....\.........\...\7.pgm

.......\....\.........\...\8.pgm

.......\....\.........\...\9.pgm

.......\....\.........\s15

.......\....\.........\...\1.pgm

.......\....\.........\...\10.pgm

.......\....\.........\...\2.pgm

.......\....\.........\...\3.pgm

.......\....\.........\...\4.pgm

.......\....\.........\...\5.pgm

.......\....\.........\...\6.pgm

.......\....\.........\...\7.pgm

.......\....\.........\...\8.pgm

.......\....\.........\...\9.pgm