基于深度图像的图像修复算法我要分享

Image inpainting algorithm based on depth image

MAP-matlab depth-map 深度图 深度图像-matlab 图像-深度

关注次数: 588

下载次数: 9

文件大小: 33749KB

代码分类: 智能算法

开发平台: matlab

下载需要积分: 1积分

版权声明:如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

代码描述

中文说明:

基于深度图像的图像修复算法,首先得到待修复图像的深度图像,然后利用图像的深度图对破损区域进行修复。


English Description:

Firstly, the depth image of the image to be repaired is obtained, and then the damaged area is repaired by using the depth image of the image.


代码预览

基于深度图的图像修复

....................\depth-aided inpainting for disocclusion restoration of multi-view images using depth-image-based rendering.pdf

....................\基于深度信息的图像修复算法.pdf

....................\深度图像修补

....................\............\color.bmp

....................\............\depth.bmp

....................\............\depth2.bmp

....................\............\depth3.bmp

....................\............\depth4.bmp

....................\............\impainting.m

....................\............\result.bmp

....................\............\result2.bmp

....................\............\result3.bmp

....................\............\result4.bmp

....................\深度图获取

....................\..........\ASW

....................\..........\...\boxfilter.m

....................\..........\...\coldiff.m

....................\..........\...\coldiff1.m

....................\..........\...\Cp.m

....................\..........\...\downcostagg.m

....................\..........\...\leftcostagg.m

....................\..........\...\logRGB.m

....................\..........\...\midcostagg.m

....................\..........\...\rightcostagg.m

....................\..........\...\runstereo.m

....................\..........\...\sdiff.m

....................\..........\...\sdiff1.m

....................\..........\...\Untitled.m

....................\..........\...\Untitled1.m

....................\..........\...\upcostagg.m

....................\..........\guided filter

....................\..........\.............\AdaptiveManifoldFilter-Source-v1.0

....................\..........\.............\..................................\adaptive_manifold_filter.m

....................\..........\.............\..................................\boxfilter.m

....................\..........\.............\..................................\compute_manifold_tree_height.m

....................\..........\.............\..................................\compute_non_local_means_basis.m

....................\..........\.............\..................................\example_color_detail_enhancement.m

....................\..........\.............\..................................\example_edge_aware_filtering.m

....................\..........\.............\..................................\example_extra_information_denoising.m

....................\..........\.............\..................................\example_non_local_means_denoising.m

....................\..........\.............\..................................\example_referenceForCVPR11.m

....................\..........\.............\..................................\example_Table_1.m

....................\..........\.............\..................................\fillPixelsReference.m

....................\..........\.............\..................................\filtermask.m

....................\..........\.............\..................................\guidedfilter_color.m

....................\..........\.............\..................................\hs_err_pid3508.log

....................\..........\.............\..................................\h_filter.m

....................\..........\.............\..................................\image

....................\..........\.............\..................................\.....\af

....................\..........\.............\..................................\.....\view1.png

....................\..........\.............\..................................\.....\view5.png

....................\..........\.............\..................................\.....\单纯导向

....................\..........\.............\..................................\images

....................\..........\.............\..................................\......\cones4.jpg

....................\..........\.............\..................................\......\cones5.jpg

....................\..........\.............\..................................\......\cones6.jpg

....................\..........\.............\..................................\......\eyes_closeup_smaller.png

....................\..........\.............\..................................\......\kodim23.png

....................\..........\.............\..................................\keep.m

....................\..........\.............\..................................\README.txt

....................\..........\.............\..................................\RF_filter.m

....................\..........\.............\..................................\runStereoMatcher.m

....................\..........\.............\..................................\weightedMedianMatlab.m

....................\..........\.............\article_lr.pdf

....................\..........\.............\boxfilter.m

....................\..........\.............\census.m

....................\..........\.............\example_referenceForCVPR11.m

....................\..........\.............\fillPixelsReference.m

....................\..........\.............\filtercode.zip

....................\..........\.............\filtermask.m

....................\..........\.............\funcptK.m

....................\..........\.............\funcptseg.m

....................\..........\.............\gradTmpl.pgm

....................\..........\.............\gradTmpr.pgm