说明:MIDACO是一般的优化问题求解器。 MIDACO可应用于连续(NLP),离散/整数(IP)和混合整数(MINLP)的问题。问题可能被限制在平等和/或不等式约束。 MIDACO适合多达数百至几千优化变量的问题。 MIDACO实现了一个自由衍生物,启发式算法的处理方法处理的问题,因为黑盒可含有关键功能...
说明:Benders分解算法是J.F.Benders在1962年首先提出的,是一种求解混合整数规划问题的算法。Benders分解算法将具有复杂变量的规划问题分解为线性规划和整数规划,用割平面的方法分解出主问题与子问题,通过迭代的方法求解出最优值。 Benders分解算法是一个很常用的算法,用来计算像最小整...
说明:最优化方法详解