SVM的参数优化——如何更好的提升分类器的性能我要分享

Parameter optimization of SVM -- how to improve the performance of classifier better

matlab 分类 svm 性能 参数 优化 更好 如何 提升

关注次数: 289

下载次数: 0

文件大小: 197.81 kB

代码分类: 其他

开发平台: matlab

下载需要积分: 2积分

版权声明:如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

代码描述

中文说明:采用cross validation的思想可以在某种意义下得到最优的参数,可以有效的避免过学习和欠学习状态的发生,最终对于测试集合的预测得到较理想的准确率.采用实例验证表明,用cross validation选取出的参数来训练SVM得到的模型比随机的选取参数训练SVM得到的模型在最后分类预测上更有效.


English Description:

Used cross validation of thought can in a species meaning Xia get optimal of parameter, can effective of avoid had learning and owes learning State of occurred, eventually for test collection of forecast get more ideal of accurate rate. used instance validation showed that, with cross validation selected out of parameter to training SVM get of model than random of selected parameter training SVM get of model in last classification forecast Shang more effective.


代码预览