说明:此源码是对人工蚁群算法的一种实现,用于无约束连续函数的优化求解,对于含有约束的情况,可以先使用罚函数等方法,把问题处理成无约束的模型,再使用本源码进行求解。
说明:梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函...
说明:最速下降法是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失...
说明:MIDACO是一般的优化问题求解器。 MIDACO可应用于连续(NLP),离散/整数(IP)和混合整数(MINLP)的问题。问题可能被限制在平等和/或不等式约束。 MIDACO适合多达数百至几千优化变量的问题。 MIDACO实现了一个自由衍生物,启发式算法的处理方法处理的问题,因为黑盒可含有关键功能...
说明:差分进化算法求解约束优化问题,JADE算法求解,性能优于其他算法。