说明:为了精准、稳定地提取滚动轴承故障特征,提出了基于变分模态分解和奇异值分解的特征提取方法,采用标准模糊C均值聚类(fuzzy C means clustering, FCM)进行故障识
别。对同一负荷下的已知故障信号进行变分模态分解,利用
奇异值分解技术进一步提取各模态特征,通过FCM形成标准聚类中心...
说明:k-均值聚类是一种矢量量化,最初从信号处理,这是流行的数据挖掘中的聚类分析的方法。k-均值聚类分区 n 个观测到 k 集群每个观察值属于最近均值集群目标,作为该群集的一个原型。这会导致 Voronoi 单元格数据空间的划分。问题是计算困难 (np) ;然而,有高效的启发式算法,并普遍采用和快速收敛到...