说明:共轭梯度法(Conjugate Gradient)是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各...
说明:2018美赛D题精选最全面!(翻译、思路、解析视频、相关数据、参考文献)
说明:共轭梯度法(Conjugate Gradient)是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各...
说明:基于生物地理学的优化,优良的全局优化算法 !地理学是研究生物的地理分布。执政的生物分布的数学方程首先发现和开发在 1960 年代。工程师的思维方式是我们可以汲取自然。这促使在优化问题中的生物地理学应用。就像数学上的生物遗传学激励遗传算法 (气) 的发展和生物神经元的数学人工神经网络的发展,本文认为生...
说明:Benders分解算法是J.F.Benders在1962年首先提出的,是一种求解混合整数规划问题的算法。Benders分解算法将具有复杂变量的规划问题分解为线性规划和整数规划,用割平面的方法分解出主问题与子问题,通过迭代的方法求解出最优值。 Benders分解算法是一个很常用的算法,用来计算像最小整...
说明:适合学习多目标优化算法的好例子,完美运行,粒子群算法 多目标优化是在现实各个领域中都普遍存在的问题,每个目标不可能都同时达到最优,必须各有权重。但是,究竟要怎样分配这样的权重,这已经成为人们研究的热点问题。同时,根据生物进化论发展起来的遗传算法,也得到了人们的关注。将这两者结合起来,能够利...