说明:这是一种多目标的粒子群优化算法,包含了两个目标函数,对学习粒子群算法及很好的理解该算法非常有用-Examples of niche PSO,
说明:目前最先进的标准粒子群算法,是美国人写的,不管是迭代速度还是迭代精度都达到了先进水平,目前正在研究粒子群算法的同学可以看一看,亲测效果不错。本人在原来的基础上进行了代码的优化和改进,加入了适应度函数的变化曲线,并提供了多种测试函数,直接用matlab打开就可以运行。
说明:目前最先进的标准粒子群算法,是美国人写的,不管是迭代速度还是迭代精度都达到了先进水平,目前正在研究粒子群算法的同学可以看一看,亲测效果不错。本人在原来的基础上进行了代码的优化和改进,加入了适应度函数的变化曲线,并提供了多种测试函数,直接用matlab打开就可以运行。
说明:NSGA2多目标优化算法,配上说明文档 NSGA-Ⅱ算法是 Srinivas 和 Deb 于 2000 年在 NSGA 的基础上提出的,它比 NSGA算法更加优越:它采用了快速非支配排序算法,计算复杂度比 NSGA 大大的降低;采用了拥挤度和拥挤度比较算子,代替了需要指定的共享半径 shareQ,并...