说明:经验模态分解(Empirical Mode Decomposition,简称EMD))方法被认为是2000年来以傅立叶变换为基础的线性和稳态频谱分析的一个重大突破 [1] ,该方法是依据数据自身的时间尺度特征来进行信号分解,无须预先设定任何基函数。这一点与建立在先验性的谐波基函数和小波基函数上的傅...
说明:前景目标提取过程自己编写的程序,可以考虑不同背景下操作,目前,监控视频信息的自动处理与预测在信息科学、计算机视觉、机器学习、模式识别等多个领域中受到极大的关注。而如何有效、快速抽取出监控视频中的前景目标信息,是其中非常重要而基础的问题