说明:k-均值聚类是一种矢量量化,最初从信号处理,这是流行的数据挖掘中的聚类分析的方法。k-均值聚类分区 n 个观测到 k 集群每个观察值属于最近均值集群目标,作为该群集的一个原型。这会导致 Voronoi 单元格数据空间的划分。问题是计算困难 (np) ;然而,有高效的启发式算法,并普遍采用和快速收敛到...
说明:在许多现实世界的应用中,我们处理与多个相关的分类/回归/聚类任务。对于例如,治疗结果的预测(Bickel et al.,2008),预测效果的任务几种药物的组合是相关的。在疾病进展预测中,预测在每个时间点的结果可以被视为一个任务,这些任务是时间相关的(周等。,2011B)。一个简单的方法是独立解决这...