说明:本案例是采用GRNN(径向基)神经网络预测水资源量,GRNN神经网络适合于小样本、高精度预测,本实例附有数据(不全),下载者可以直接将数据更改为自己的数据便可以使用。程序中使用了交叉验证方法,使预测精度大大提高。
说明:matlab下偏最小二乘回归模型交叉有效性验证,及奇异点发现
说明:一个matlab写的bp人工神经网络程序,参数优化采用交叉验证办法
说明:非常全面的灵敏度分析讲解以及灵敏度检验案例。
说明:假定确定性函数 Y 具有加性高斯噪声,EVAR(Y) 返回这种噪声估计的方的差。 薄板样条平滑模型用来平滑 Y。它假设其广义的交叉验证分数是最小的模型可以提供的加性噪声方差。几个测试表明 EVAR 工作得很好"不太不规则"功能。