说明:K-MEANS聚类算法,以及PSO和QPSO算法改进K-MEANS算法,breastcancer数据验证了该分类模型的有效性
说明:针对感应电机扩展卡尔曼滤波器转速估计中难以取得卡尔曼滤波器系统噪声矩阵和测量噪声矩阵最优值的问题,提出了一种基于改进粒子群算法优化的扩展卡尔曼滤波器转速估计方法。算法通过融合遗传算法和粒子群算法的优点,采用可调整的算法模型对粒子群算法进行改进,将改进的粒子群算法对扩展卡尔曼滤波器中的系统噪声矩阵和测...
说明:基本PSO极易陷入早熟收敛,而此算法在基本PSO的参数上做一些改进,从而达到增强多样性,避免过早的陷入局部最优,并发生早熟收敛。
说明:基本PSO极易陷入早熟收敛,而此算法在基本PSO的参数上做一些改进,从而达到增强多样性,避免过早的陷入局部最优,并发生早熟收敛。....
说明:基本PSO极易陷入早熟收敛,而此算法在基本PSO的参数上做一些改进,从而达到增强多样性,避免过早的陷入局部最优,并发生早熟收敛。....
说明:基本PSO极易陷入早熟收敛,而此算法在基本PSO的参数上做一些改进,从而达到增强多样性,避免过早的陷入局部最优,并发生早熟收敛。.......
说明:基本PSO极易陷入早熟收敛,而此算法在基本PSO的参数上做一些改进,从而达到增强多样性,避免过早的陷入局部最优,并发生早熟收敛。
说明:基本PSO极易陷入早熟收敛,而此算法在基本PSO的参数上做一些改进,从而达到增强多样性,避免过早的陷入局部最优,并发生早熟收敛。.
说明:基本PSO极易陷入早熟收敛,而此算法在基本PSO的参数上做一些改进,从而达到增强多样性,避免过早的陷入局部最优,并发生早熟收敛。