说明:支持向量机(Support Vector Machines ,SVM)由 Vapnik 1995年最早提出,通过核函数的展开定理,在某种程度上避免了“维数灾难”,并且在解决小样本、非线性和高维模式识别中表现出了独有的优势,引起很多学者的重视,取得一定的研究成果,并且被许多学者推广应用到其他机器学习领...
说明:支持向量机 (SVM) 第一次听到于 1992 年,由宝狮、 尺管和在柯尔特-92 Vapnik 介绍。支持向量机 (支持向量机)是一套用于分类和回归的相关监督的学习方法。他们属于一个家庭的广义线性分类器。另一项条款,在的支持向量机 (SVM) 是一个分类和回归的预测工具,使用机器学习理论来最大化同...
说明:多传感器数据融合形成于上世纪80年代,目前已成为研究的热点。它不同于一般信号处理,也不同于单个或多个传感器的监测和测量,而是对基于多个传感器测量结果基础上的更高层次的综合决策过程。 多传感器数据融合比单一传感器信息有如下优点,即容错性、互补性、实时性、经济性,所以逐步得到推广应用。应用领域除...