说明:用粒子群优化算法进行特征选择和SVM参数优化
说明:对多目标优化算法NSGA-II算法的改进,该算法进化代数少,但是获得的最终效果特别好!
说明:用粒子群优化算法进行特征选择和SVM参数优化。
说明:多目标差分进化算法(nsde)将非支配排序思想及精英策略与差分进化算法的差分进化机制相融合,经实测,在解决同一问题时,能够比nsga-2算法节省一半的时间,而且能够得到比nsga-2更优秀的帕累托前沿,能够得到更优秀的非劣解集
说明:将约束离散优化(CDO)转化为非线性约束非负整数规划(CNIP),该算法采用了种群混沌初始化、双方案变异、离散差分进化等多种改进措施,可求解非线性约束非负整数规划(CNIP),以及具有随机扰动的积分算子。针对非线性约束,给出了连续映射基惩罚的计算方法和基函数的公式,并在此基础上提出了处理约束的自适应...