说明:基于kernel pca的非线性降维算法,原文发表于神经计算杂志上,有兴趣者可以先看论文。
说明:主成分分析方法(PCA),PCA算法的理论依据是K-L变换,通过一定的性能目标来寻找线性变换W,实现对高维数据的降维。
说明:LDA线性判别分析是一种经典的提取特征的算法,它的基本思想是通过样本的类内离散度和类间离散度,寻找由最佳投影矢量构成的投影矩阵。将原始的样本数据投影到特征子空间中,实现数据分类。由于在人脸识别时常常会遇到小样本问题,因此在本次代码中,先用PCA主成分分析的方法降低样本维数,再用线性判别分析提取特征。...