说明:支持向量机 (SVM) 第一次听到于 1992 年,由宝狮、 尺管和在柯尔特-92 Vapnik 介绍。支持向量机 (支持向量机)是一套用于分类和回归的相关监督的学习方法。他们属于一个家庭的广义线性分类器。另一项条款,在的支持向量机 (SVM) 是一个分类和回归的预测工具,使用机器学习理论来最大化同...
说明:支持向量机(Support Vector Machine,SVM)是Corinna Cortes和Vapnik等于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 在机器学习中,支持向量机(SVM,还支持矢量网...
说明:KNN-KSR方法是一种不直接建立自变量与因变量间数学关系去预测因变量的方法。该方法基于以下两个假设:(1)在所选择的样本描述指标信息足够完备时,性质越相似的样本在同类指标间的空间分布越接近,否则其空间距离也越大;(2)如果两类指标间存在较大关联度,则样本分别在两类指标内的空间分布也具有较大相似性。...
说明:重要参数的提取,BP神经网络用于函数拟合与模式识别,包含CV、CA、Single、当前、恒转弯速率、转弯模型,最终的权值矩阵就是滤波器的系数,包括脚本文件和函数文件形式,对信号进行频谱分析及滤波。