说明: KNN 算法其实简单的说就是“物以类聚”,也就是将新的没有被分类的点分类为周围的点中大多数属于的类。它采用测量不同特征值之间的距离方法进行分类,思想很简单:如果一个样本的特征空间中最为临近(欧式距离进行判断)的K个点大都属于某一个类,那么该样本就属于这个类。这就是物以类聚的思想。
说明:粒子图像分割及匹配均为自行编制的子例程,可以得到很精确的幅值、频率、相位估计,表示出两帧图像间各个像素点的相对情况,光纤无线通信系统中传输性能的研究,计算十字叉丝的在不同距离的衍射图像,利用最小二乘法进行拟合多元非线性方程。
说明:对于细胞图像序列中多目标的追踪是细胞运动研究中的难点,针对高密度细胞图像中细胞运动的复杂性,本文提出一个细胞分割和追踪的系统。在细胞分割部分,针对实验所用细胞图像序列的特点,本文分别采用了不同的分割方法。在基本的细胞分割后,由于得到的分割图像存在着一些粘连细胞,为了将之分离,采用了基于Freeman...