说明:近年来,基于启发式的多目标优化技术得到了很大的发展,研究表明该技术比经典方法更实用和高效。有代表性的多目标优化算法主要有NSGA、NSGA-II、SPEA、SPEA2、PAES和PESA等。粒子群优化(PSO)算法是一种模拟社会行为的、基于群体智能的进化技术,以其独特的搜索机理、出色的收敛性能、方便...
说明:适合学习多目标优化算法的好例子,完美运行,粒子群算法 多目标优化是在现实各个领域中都普遍存在的问题,每个目标不可能都同时达到最优,必须各有权重。但是,究竟要怎样分配这样的权重,这已经成为人们研究的热点问题。同时,根据生物进化论发展起来的遗传算法,也得到了人们的关注。将这两者结合起来,能够利...
说明:多目标优化遗传算法matlab程序多目标优化遗传算法matlab程序多目标优化遗传算法matlab程序多目标优化遗传算法matlab程序多目标优化遗传算法matlab程序
说明:NSGA-Ⅱ是目前最流行的多目标进化算法之一,它降低了非劣排序遗传算法的复杂性,具有运行速度快,解集的收敛性好的优点,成为其他多目标优化算法性能的基准。NSGA-Ⅱ算法采用了快速非支配排序算法,计算复杂度比 NSGA 大大的降低
说明:解决微电网多目标经济调度问题,其中包含了三个目标函数,各个目标可适当修改,采用的求解算法是改进的多目标粒子群算法,已调试运行通过
说明:在多目标的优化问题中,经常要分析解的收敛性和分布性,这时的多目标问题就会选择标准化测试函数,用来观察Pareto前沿,以此来观察解的分布性和收敛性,也就能分析该算法对于原多目标问题的算法有没有提升。