说明:聚类分析的目的是将一组给定的数据分成子集,这样这些子集代表数据本身的某些相似之处。人类的眼睛立刻认识到两个几何形状、 两个半-月亮,并能够将数据划分为两个群集,在那里在同一点群集属于同一半月形。然而,一般来说,和特别是来自现实世界的问题的数据,是不可能只是看看数据,所以我们需要依靠算法来做到这一点。
说明:应用背景 虽然传统的基因选择方法已经能够取得很好的效果,选出的基因子集有利于后续样本分类,但是这些方法主要考虑数据方差和分布的相关性,从而选出的基因可解释性较差且冗余度较高。为了获得最小冗余可解释的基因子集,本文在充分考虑基因类别灵敏度 (Gene to class sensitivity,...
说明:bagging 集成算法描述:Bagging是一种把多个不同的弱学习器训练成一个强学习器的集成学习方法Bagging是一种并行训练过程,通过分类测试样本的有放回抽样,获取多个分类测试子样本,通过分类子样本训练T个基分类器,当对每一个实例进行分类时,分别调用这T个基分类器,得到T个结果,最后对分类问题...