边界拟合我要分享

Boundary fitting

椭圆拟合 椭圆检测 边界椭圆拟合

关注次数: 520

下载次数: 1

文件大小: 139KB

代码分类: 仿真计算

开发平台: matlab

下载需要积分: 1积分

版权声明:如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

代码描述

中文说明:

读图然后根据图像的对象,进行边缘检测,椭圆拟合。


% % % % % % % % 乒乓球面阵图像处理及边界椭圆拟合 % % % % % % % %

% 编写日期:2020年5月26日

% 编写人:ZlinJ

% 大概思路。读图→形态学(关运算,开运算)→边缘检测→区域标记→边界追踪→自定义椭圆函数拟合。


%%图像边缘检测和拟合轮廓

clc

clear

close all

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% 开始 %%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tic;


%读取图

I = imread('C:\Users\Administrator\Desktop\201.jpg');

K1=medfilt2(I,[3,3]);

SE=strel('disk',1); %创建圆盘半径1

K2=imclose(K1,SE);%关运算

figure,imshow(K2);title('关运算');

K3=imopen(K2,SE);%开运算

figure,imshow(K3);title('开运算');

I1= im2bw(K1,70/255); %二值化

I2 = imfill(I1,'holes'); %填补孔洞

[M,N] = size(I2);

figure(1),imshow(I2);title('2值化原图');

hold on

% 选取待拟合坐标

% conicP = ginput(15);

bw1 = edge(I2,'canny',0.5); %边缘检测

figure,imshow(bw1);title('边缘检测');

% imwrite(bw1,'C:\Users\Administrator\Desktop\202.jpg'); %输出图,人工检测拟合结果。

[L,num] = bwlabel(bw1); %L指与bw1同样大小的矩阵,num代表图像中对象的数目 %标签标记连通域

YuanX=zeros(num,2);

% X1=zeros(2,num);

% Y1=zeros(2,num);

for i = 1:num

[row,col] = find(L == i);

% [row,col] = find(X, ...)语句理解

% 返回矩阵X中非零元素的行和列的索引值。

% 这个语法对于处理稀疏矩阵尤其有用。

% 如果X是一个N(N>2)维矩阵,col包括列的线性索引。

% 例如,一个5*7*3的矩阵X,有一个非零元素X(4,2,3),find函数将返回row=4和col=16。

% 也就是说,(第1页有7列)+(第2页有7列)+(第3页有2列)=16。

conicP = zeros(length(row),2);% 创建一个和cow矩阵相同行数2列的0矩阵

conicP(:,1) = col;

conicP(:,2) = row;

figure(1),plot(conicP(:,1)', conicP(:,2)', 'xr'); %绘制采样点

%% 自定义椭圆函数拟合

a0 = [1 1 1 1 1 1];

f = @(a,x)a(1)*x(:,1).^2+a(2)*x(:,2).^2+a(3)*x(:,1).*x(:,2)+a(4)*x(:,1)+a(5)*x(:,2)+a(6);%建立方程

p = nlinfit(conicP , zeros(size(conicP, 1), 1), f,[1 2 3 4 5 6]);

syms x y

conic = p(1)*x^2++p(2)*y^2+p(3)*x*y+p(4)*x+p(5)*y+p(6);

A=p(1);B=p(3);C=p(2);D=p(4);E=p(5);F=p(6);

Xc=(B*E-2*C*D)/(4*A*C-B^2);

Yc=(B*D-2*A*E)/(4*A*C-B^2);

X=[Xc,Yc];

YuanX(i,:)=X;

% X1(1,i)=Xc;

% Y1(1,i)=Yc;

%% 在原图上显示拟合结果

c = ezplot(conic,[0,N],[0,M]);

figure(1),set(c, 'Color', 'Blue','LineWidth',2);

end


toc;



English Description:

Read the image and then carry out edge detection and ellipse fitting according to the object of the image


%%%%%%%%%%% image processing of table tennis spherical array and boundary ellipse fitting%%%%%%%%%%%

% date of preparation: May 26, 2020

% Author: zlinj

% general idea. Image reading → morphology (off operation, on operation) → edge detection → region marking → boundary tracking → custom elliptic function fitting


%% image edge detection and contour fitting

clc

clear

close all

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


% read graph

i = imread (&\39; c:\users\administrator\desktop\201.jpg&\39;)

K1=medfilt2(I,[3,3]);

SE=strel('disk',1); % Create disc radius 1

k2=imclose (K1, Se);% Close operation

figure, imshow (K2); Title (&\39; related operation &\39;)

K3=imopen(K2,SE);% Open operation

figure, imshow (K3); Title (&\39; open operation &\39;)

I1= im2bw(K1,70/255); % Binarization

i2 = imfill (I1, &\39; holes&\39;);% Filling holes

[m, n] = size (i2)

figure(1),imshow(I2); Title (&\39; 2-valued original drawing &\39;)

hold on

% select the coordinate to be fitted

% conicp = ginput (15)

bw1 = edge(I2,'canny',0.5); % Edge detection

figure, imshow (bw1); Title (&\39; edge detection &\39;)

% imwrite(bw1,'C:\Users\Administrator\Desktop\202.jpg'); % Output the graph and manually detect the fitting results

[L,num] = bwlabel(bw1); % L refers to the matrix of the same size as bw1. Num represents the number of objects in the image% label marks the connected domain

yuanx=zeros (Num, 2)

% X1=zeros(2,num);

% Y1=zeros(2,num);

for i = 1:num

[row,col] = find(L == i);

% [row,col] = find(X, ...) Statement understanding

% returns the index values of rows and columns of non-zero elements in matrix X The syntax

% is particularly useful for dealing with sparse matrices

% if x is an n (n> 2) dimensional matrix, col includes the linear index of the column

% for example, if a 5*7*3 matrix X has a non-zero element X (4,2,3), the find function will return row=4 and col=16

% that is, (Page 1 has 7 columns) + (page 2 has 7 columns) + (page 3 has 2 columns) =16

conicP = zeros(length(row),2);% Create a 0 matrix with the same row number and 2 columns as the cow matrix

conicp (:, 1) = col

conicP(:,2) = row;

figure(1),plot(conicP(:,1)', conicP(:,2)', &# 39; xr'); % Draw sampling points

%% custom elliptic function fitting

A0 = [1 1 1 1 1]

f = @(a,x)a(1)*x(:,1).^ 2+a(2)*x(:,2).^ 2+a(3)*x(:,1).* x(:,2)+a(4)*x(:,1)+a(5)*x(:,2)+a(6);% Establish the equation

P = nlinfit (conicp, zeros (size (conicp, 1), 1), F, [123456]

syms x y

conic = p(1)*x^2++p(2)*y^2+p(3)*x*y+p(4)*x+p(5)*y+p(6);

A=p(1); B=p(3); C=p(2); D=p(4); E=p(5); F=p(6);

Xc=(B*E-2*C*D)/(4*A*C-B^2);

Yc=(B*D-2*A*E)/(4*A*C-B^2);

X=[Xc,Yc];

YuanX(i,:)=X;

% X1(1,i)=Xc;

% Y1(1,i)=Yc;

%% display the fitting result on the original drawing

C = ezplot (conic, [0, n], [0, m])

figure(1),set(c, 'Color', 'Blue','LineWidth',2);

end


toc;



代码预览

边界拟合\201.jpg

边界拟合\TYnihe.m

边界拟合\TuoYuanNH.m

边界拟合