中文说明:应用背景这个工具箱包括机器学习方法:基于稀疏编码的分类,基于字典的降维子字典学习,学习模型,线性回归和分类(LRC)。核l_1正则或(和)非负约束稀疏编码和字典学习模型在这个工具箱实现。 ;关键技术活动集,内点,近端,和分解方法来优化这些模型。目前的版本是1.9(2015年3月2日)。这个工具箱是免费的学术用途。 ;
English Description:
Application backgroundThis toolbox includes the machine learning approaches: sparse coding based classification, dictionary learning based dimension reduction, sub-dictionary learning models, and linear regression classification (LRC). Kernel l_1 regularized or (and) non-negative constrained sparse coding and dictionary learning models are implemented in this toolbox. Key TechnologyActive-set, interior-point, proximal, and decomposition methods are provided to optimize these models. The current version is 1.9 (March 02, 2015). This toolbox is free for academic usage.