基于粒子群K均值聚类算法的电梯交通模式识别方法 PSO我要分享

Elevator traffic pattern recognition method PSO based on particle swarm K-means clustering algorithm

粒子群 K均值 聚类算法 电梯 交通模式 识别方法 PSO

关注次数: 388

下载次数: 3

文件大小: 12KB

代码分类: 智能算法

开发平台: matlab

下载需要积分: 1积分

版权声明:如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

代码描述

中文说明:

一种基于粒子群K均值聚类算法的电梯交通模式识别方法。该方法通过对此前一周的原始客流数据进行聚类分析,得到相应交通模式的聚类中心坐标[2]。针对实时变化的交通流数据,采集5 mins时段客流数据,根据最近邻原则划分其归属的聚类中心,从而识别出当前的交通模式。


English Description:

An elevator traffic pattern recognition method based on particle swarm K-means clustering algorithm. Through clustering analysis of the original passenger flow data of the previous week, the cluster center coordinates of the corresponding traffic modes are obtained [2]. According to the real-time traffic flow data, the 5-minute passenger flow data is collected, and the clustering center is divided according to the nearest neighbor principle, so as to identify the current traffic mode


代码预览

PSO

...\calobjvalue.asv

...\calobjvalue.m

...\hs_err_pid476.log

...\initpop.asv

...\initpop.m

...\main.asv

...\main.m

...\regulate.asv

...\renew.asv

...\renew.m

...\untitled1.fig

...\老程序.txt