非线性脉冲和孤子耦合的理论我要分享

Theory of nonlinear pulse and soliton coupling

色散 matlab-nls 色散系数matlab 耦合波 孤子

关注次数: 350

下载次数: 3

文件大小: 2KB

代码分类: 仿真计算

开发平台: matlab

下载需要积分: 1积分

版权声明:如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

代码描述

中文说明:

在这篇文章中,我们给出了非线性脉冲和孤子耦合的理论,它包含了2阶3阶色散,模间色散,损耗增益,色散不匹配,高阶非线性等等。文章主要说明了几个非线性耦合的基本问题: 非线性脉冲耦合行为主要依赖于参量Lcd (色散长度乘耦合系数),而不是输入脉冲形状,因而,孤子,高斯脉冲以及类高斯脉冲表现出同样的开关特性。根据Lcd, 耦合器可分为三个工作区,每个区有自己独特的耦合行为。一个脉冲是否表现为连续波的耦合行为还是超快脉冲的耦合行为,决定于Lcd 而不是脉宽。 我们显示0.8皮秒的脉冲也遵从连续波的方程和耦合行为, 可以当连续波一样来分析。


English Description:

In this paper, we give the theory of nonlinear pulse and soliton coupling, which includes second-order, third-order dispersion, inter mode dispersion, loss gain, dispersion mismatch, higher-order nonlinearity and so on. In this paper, several basic problems of nonlinear coupling are discussed: the nonlinear pulse coupling behavior mainly depends on the parameter LCD (dispersion length multiplied by coupling coefficient), rather than the input pulse shape. Therefore, solitons, Gaussian pulses and Gaussian like pulses show the same switching characteristics. According to LCD, the coupler can be divided into three working areas, each of which has its own unique coupling behavior. Whether a pulse behaves as continuous wave coupling or ultrafast pulse coupling depends on LCD rather than pulse width. We show that the 0.8 picosecond pulse also follows the continuous wave equation and coupling behavior, which can be analyzed as a continuous wave


代码预览

nls1.m