中文说明: ; ;让我们考虑两个半无限各向同性均匀 ;在界面的接触弹性半空间。一个事件平面波角 ,反射系数的变化;发病是由著名的诺特Zoeppritz给定方程。这些方程是笨拙和不直接物理 ;洞察力。幸运的是,在层参数的微小变化和入射角在地震 常见;反射的应用,这些方程可以精确地近似(例如,博特费尔德,1961;理查兹和弗雷泽,1976; ;Aki和理查兹,1980;祖师,1985)。 ;反射系数 ; 从方程得到的;(1919)时,Aki和理查兹(2002),史密斯和吉德洛夫(1987),罗素等人。(2011)。该模型是Ostrander气砂模型(1984),wherevp1 = 2438米/秒,VP2 = 3048米/秒,VS1,VS2 = 1625米/秒,1244米/秒,ρ1 =2.14公斤/立方米,与ρ2 = 2.40千克/立方米。
English Description:
Let us consider two semi-infinite isotropic homogeneous elastic half-spaces in contact at a plane interface. For an incident plane wave, the reflection coefficient variation with angle of incidence is given by the well-known Knott-Zoeppritz equations. These equations are unwieldy and defy direct physical insight. Fortunately, for small variations in layer parameters and angles of incidence commonly encountered in seismic reflection applications, these equations can be accurately approximated (e.g., Bortfeld, 1961; Richards and Frasier, 1976;