中文说明:这些技术在低强度图像蒙版用在人脸识别中的主要应用。直方图均衡化是最受欢迎由于其有效性和简洁性的对比度增强算法。它可以分为两个分支,根据使用的变换函数: 全局或本地。全局直方图均衡化是简单、 快速,但它的对比度增强力量是相对较低。局部直方图均衡化,另一方面,可以更有效地增强整体对比度计算所需的复杂性,却因其完全重叠的子块非常高。直方图均衡化 (他) 有时是有用的光照补偿的。不过,它工作只有当图像是加剧或全球变暗。对比有限自适应直方图均衡化 (CLAHE) 和局部直方图均衡化 (LHE) 是更有效地补偿当地光照变化,前者执行基于数据块的直方图均衡、 而后者执行基于像素的直方图均衡化。在本文中,面部图像预处理算法的一种新方法被称为面向局部直方图均衡化 (者耶)。者耶是类似于局部直方图均衡化 (LHE),但它捕捉到了边缘的方向而 LHE 则不能。虽然者耶和使用不同的功能及其各运营商提出了平汉李、 思伟吴义炳洪在 9 月 2012.In 这个项目,我介绍了一些新的功能,使用者耶运算符在低强度图像蒙版和人脸识别的效率更高。运行这段代码首先使用 main.m案例斯里瓦斯塔瓦
English Description:
These techniques are used in masking of low intensity images with its main application in face recognition.Histogram equalization is the most popular algorithm for contrast enhancement due to its effectiveness and simplicity. It can be classified into two branches according to the transformation function used: global or local. Global histogram equalization is simple and fast, but its contrast enhancement power is relatively low. Local histogram equalization, on the other hand, can enhance overall contrast more effectively, but the complexity of computation required is very high due to its fully overlapped sub-blocks.Histogram equalization (HE) is sometimes useful for illumination compensation. However, it works well only when the image is intensified or darkened globally. Contrast-limited adaptive histogram equalization (CLAHE) and local histogram equalization (LHE) are more effective in compensating illumination variations locally, the former performs block based histogram equaliza