中文说明:仿射 (或一阶) 的光流模型具有描述意象翻译、 扩张、 旋转和剪切的 6 参数。类 affine_flow 提供的方法估计这些参数的两帧图像序列。该类实现的空间和时间的灰度梯度估计的参数最小二乘拟合。这是众所周知的 Lucas 沓方法扩展。对直线的网格,或对数极坐标网格,要么照惯例,抽取图像。在后者的情况下,类可能反复细化其估计通过移动采样网格跟踪这项议案。提供选项来指定利息、 平滑,采样参数的区域。为此,该文件包括类和测试图像的示范。平滑图像和估算渐变独立,可能有用的函数和对数极坐标采样功能包括 (和分别在提交 27023 中可用)。
English Description:
An affine (or first-order) optic flow model has 6 parameters, describing image translation, dilation, rotation and shear. The class affine_flow provides methods to estimates these parameters for two frames of an image sequence.The class implements a least-squares fit of the parameters to estimates of the spatial and temporal grey-level gradients. This is an extension of the well-known Lucas-Kanade method. The images are either sampled conventionally, on a rectilinear grid, or on a log-polar grid. In the latter case, the class may iteratively refine its estimates by moving the samplin