中文说明:构造多个帕累托最优方法 基于多目标遗传算法的模糊系统是 在此文件中提出。第一,以获得良好的初始 一种改进的模糊聚类算法用于模糊系统 识别模糊系统,同时 consequents 的先行 旨在分别减少计算负担。 第二,基于帕累托多目标遗传算法 NSGA-ⅱ 和可解释性-驱动简化 使用技术以迭代方式进化初始模糊系统 三个目标: 精度性能、 数 模糊规则和模糊集的数量。多个方法, 帕累托最优模糊系统获得。建议 方法应用于基准的两个问题和结果 显示它的有效性。
English Description:
An approach to construct multiple Pareto-optimal fuzzy systems based on a multi-objective genetic algorithm is proposed in this paper. First, in order to obtain a good initial fuzzy system, a modified fuzzy clustering algorithm is used to identify the antecedents of fuzzy system, while the consequents are designed separately to reduce computational burden. Second, a Pareto multi-objective genetic algorithm based on NSGA-II and the interpretability- driven simplification techniques are used to evolve the initial fuzzy system iter