Tikhonov正则化实现的超分辨率图像序列的重建我要分享

Reconstruction of super resolution image sequence based on Tikhonov regularization

超分辨率-正则 Tikhonov正则化 Super-Resolution 图像重建 序列图像重建

关注次数: 401

下载次数: 1

文件大小: 126K

代码分类: 图像处理

开发平台: matlab

下载需要积分: 1积分

版权声明:如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

代码描述

中文说明:利用Tikhonov正则化实现的超分辨率图像序列的重建,效果还好


English Description:

Using Tikhonov regularization to achieve super-resolution image sequence reconstruction, the effect is good


代码预览

Tikhonov Regularization for super resolution

............................................\disk.mat

............................................\DTDZ.m

............................................\LKOFlow

............................................\.......\Affine

............................................\.......\......\ComputeLKFlowParms.m

............................................\.......\......\GaussianDownSample.m

............................................\.......\......\GuassianPyramid.m

............................................\.......\......\IterativeLKOpticalFlow.m

............................................\.......\......\PyramidalLKOpticalFlow.m

............................................\.......\......\RegisterImageSeq.m

............................................\.......\......\ResampleImg.m

............................................\.......\ComputeLKFlowParms.m

............................................\.......\GaussianDownSample.m

............................................\.......\GuassianPyramid.m

............................................\.......\IterativeLKOpticalFlow.m

............................................\.......\PyramidalLKOpticalFlow.m

............................................\.......\RegisterImageSeq.m

............................................\.......\ResampleImg.m

............................................\Readme.m

............................................\SuperRes.m

............................................\test.m

............................................\text.mat

............................................\WTWZ.m

............................................\WTY.m