中文说明:利用Tikhonov正则化实现的超分辨率图像序列的重建,效果还好
English Description:
Using Tikhonov regularization to achieve super-resolution image sequence reconstruction, the effect is goodReconstruction of super resolution image sequence based on Tikhonov regularization
关注次数: 386
下载次数: 1
文件大小: 126K
中文说明:利用Tikhonov正则化实现的超分辨率图像序列的重建,效果还好
English Description:
Using Tikhonov regularization to achieve super-resolution image sequence reconstruction, the effect is goodTikhonov Regularization for super resolution
............................................\disk.mat
............................................\DTDZ.m
............................................\LKOFlow
............................................\.......\Affine
............................................\.......\......\ComputeLKFlowParms.m
............................................\.......\......\GaussianDownSample.m
............................................\.......\......\GuassianPyramid.m
............................................\.......\......\IterativeLKOpticalFlow.m
............................................\.......\......\PyramidalLKOpticalFlow.m
............................................\.......\......\RegisterImageSeq.m
............................................\.......\......\ResampleImg.m
............................................\.......\ComputeLKFlowParms.m
............................................\.......\GaussianDownSample.m
............................................\.......\GuassianPyramid.m
............................................\.......\IterativeLKOpticalFlow.m
............................................\.......\PyramidalLKOpticalFlow.m
............................................\.......\RegisterImageSeq.m
............................................\.......\ResampleImg.m
............................................\Readme.m
............................................\SuperRes.m
............................................\test.m
............................................\text.mat
............................................\WTWZ.m
............................................\WTY.m