本文提出一种用于独立成份分析(ICA)的特征选择滤波方案用于改善ICA算法对关键独立成份(SOI)的分离和提取,关键独立成份在其信号样本数据的空间分布上具有一定...我要分享

In this paper, a feature selection filtering scheme for independent component analysis (ICA) is prop

pdf 本文 提出 用于 独立 成份 分析 特征 选择 滤波 方案 算法 分离 提取 信号 样本 数据 空间 分布 具有

关注次数: 425

下载次数: 0

文件大小: 79.28 kB

代码分类: 其他

开发平台: matlab

下载需要积分: 2积分

版权声明:如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

代码描述

中文说明:本文提出一种用于独立成份分析(ICA)的特征选择滤波方案用于改善ICA算法对关键独立成份(SOI)的分离和提取,关键独立成份在其信号样本数据的空间分布上具有一定特征. 本文以平滑滤波为例,表明加入此类特征滤波的ICA算法可以改善对于视觉功能区等平滑图象信号的提取. 因此, 这种特征滤波技术在估计具有平滑特性的脑功能成像方面具有潜在的应用价值.-for Independent component analysis (ICA) feature selection filtering program for the improvement of ICA algorithm independent of the key ingredients (SOI), the separation and extraction, the key element in its independent signal sample data on the spatial distribution of certain characteristics. This paper smoothing filter as an example, table membership in such features filtering ICA algorithm can improve visual function areas smoothing image signal extraction. Therefore, this feature filtering technology is estimated at smoothing properties of brain imaging have potential value.


English Description:

for Independent component analysis (ICA) feature selection filtering program for the improvement of ICA algorithm independent of the key ingredients (SOI), the separation and extraction, the key element in its independent signal sample data on the spatial distribution of certain characteristics. This paper smoothing filter as an example, table membership in such features filtering ICA algorithm can improve visual function areas smoothing image signal extraction. Therefore, this feature filtering technology is estimated at smoothing properties of brain imaging have potential value.


代码预览