中文说明:应用背景在这个代码中,使用离散小波变换的新的混合技术变换(DWT)了。我们使用电源信号显示评价噪声比(PSNR)作为衡量质量,我们表明,小波变换阈值,量化,和游程编码和Huffman编码的组合为阶段,提供了比JPEG更好的PSNR性能和我们可以得到一个重要的铬。我们的算法是一样的:阅读图像——>;小波变换转型——>;阈值量化————>;>;RLE编码——>;哈夫曼编码——>;在保存文件压缩图像(*。HDWT)减压步骤我们要打开的文件(*。HDWT)后,步骤是这样:Huffman解码——>;> RLE解码—;量化反——>;IDCT变换——>;打开图像为BMP图像文件:compdwt。μm的:一种图像我们只能运行compdct压缩编码主。Mdecompdwt。μm的:要重建我们的形象,我们在这里的意思是如果我们要解压缩文件之前得到(。HDWT)只有我们运行这个代码并选择文件感兴趣。调整。M:M:频率计算概率。M:游程编码RLE。IRLE。M:逆运行长度编码abais。M:降低值大于255关键技术 ;一种新的混合技术;小波变换阈值,量化,游程编码,霍夫曼,PSNR,CR。& nbsp;& nbsp;
English Description:
Application backgroundIn this code, a new hybrid technique using the discrete wavelet transform (DWT) is presented. We show evaluation using the Power Signal to Noise Ratio (PSNR) as a measure of quality, we show that DWT with threshold, Quantization, and combination of RLE and Huffman as coding stage, provides a better performance than JPEG in terms of PSNR and we can get an important CR. Our Algorithm is like that: Reading image-->DWT transformation-->Thresholding-->Quantization-->RLE encoding--> Huffman encoding-->Save a compressed image in file (*.Hdwt) in decompression steps we should open file(*.Hdwt) aafter that the steps will be like that: Huffman decoding-->RLE decoding--> Quantization inverse-->IDCT transformation-->Open image as Bmp image Files: compdwt.m: main code to compress an image we only run compdct.m decompdwt.m: To reconstruct ou