K-Means算法PCA降维我要分享

PCA dimension reduction based on K-means algorithm

联合开发 降维聚类 降维算法 PCA-聚类 PCA可视化

关注次数: 371

下载次数: 2

文件大小: 33KB

代码分类: 仿真计算

开发平台: matlab

下载需要积分: 1积分

版权声明:如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

代码描述

中文说明:

K-Means算法,不要求建立模型之后对结果进行新的预测,没有相应的标签,只是根据数据的特征对数据进行聚类。主成分分析降维对数据进行可视化操作,对features进行降维.


English Description:

K-means algorithm, does not require new prediction of the results after the establishment of the model, there is no corresponding label, just clustering the data according to the characteristics of the data. Principal component analysis (PCA) is used to reduce the dimension of features


代码预览

Homework3\computeCentroids.m

Homework3\displayData.m

Homework3\drawLine.m

Homework3\ex3.m

Homework3\ex3data1.mat

Homework3\ex3data2.mat

Homework3\ex3_pca.m

Homework3\featureNormalize.m

Homework3\findClosestCentroids.m

Homework3\Homework3.docx

Homework3\kMeansInitCentroids.m

Homework3\pca.m

Homework3\plotDataPoints.m

Homework3\plotProgresskMeans.m

Homework3\projectData.m

Homework3\recoverData.m

Homework3\runkMeans.m

Homework3\~$mework3.docx

Homework3