图像分析的四部分代码:matlab扩散和高斯函数,线性扩散,线性复扩散,非线性扩散我要分享

Four parts of image analysis code: MATLAB diffusion and Gaussian function, linear diffusion, linear

Perona-Malik 高斯扩散 gaussian-scale-space 复扩散 matlab-laplacian

关注次数: 476

下载次数: 1

文件大小: 234KB

代码分类: 图像处理

开发平台: matlab

下载需要积分: 1积分

版权声明:如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

代码描述

中文说明:

包括图像分析的四部分代码:matlab扩散和高斯函数,线性扩散,线性复扩散,非线性扩散。

包括四个部分:

[1]函数:diffusion.m gauss.m

[2] 线性扩散将线性扩散应用于图像,创建线性比例空间。MATLAB代码:demo_lin.m Image:haifa1.bmp

[3]线性复扩散应用线性复扩散创建高斯和拉普拉斯尺度空间。MATLAB代码:demo\cmplin.m

[4]非线性扩散:Perona-Malik

[“各向异性扩散”]Catte等.P-m复斜坡保持扩散的正则化非线性边缘保持扩散经典Perona-Malik过程:扩散系数的值在一阶导数估计的边缘附近减小。最好应用于台阶边缘。Catte等人的正则化版本-用于控制过程的梯度估计通过高斯平滑。被证明在数学上是适定的。斜坡保持复杂扩散-最好的斜坡类型的边缘。结果更平滑,几乎没有楼梯效果。MATLAB代码:demo\nldif.m图片:ct_扫描.bmp


English Description:

Including four parts of image analysis code: MATLAB diffusion and Gaussian function, linear diffusion, linear complex diffusion, nonlinear diffusion. < / P > < p > includes four parts: < / P > < p > [1] function: diffusion. M Gauss. M < / P > < p > [2] apply linear diffusion to image to create linear scale space. Matlab code: Demo_ lin.m Image:haifa1.bmp < / P > < p > [3] linear complex diffusion uses linear complex diffusion to create Gaussian and Laplacian scale spaces. Matlab code: demo / cmplin. M < / P > < p > [4] nonlinear diffusion: Perona Malik < / P > < p > ["anisotropic diffusion"] catte et al. P-M complex slope preserving diffusion regularized nonlinear edge preserving diffusion classical Perona Malik process: the value of diffusion coefficient decreases near the edge of the first derivative estimation. It is best applied to the edge of the step. Catte et al's regularized version - gradient estimation for control processes via Gaussian smoothing. It is proved to be well posed mathematically. Slopes keep complex diffusion - the best slope type at the edge. The result is smoother, with little stair effect. Matlab code: demo / nldif. M picture: CT_ Scan.bmp


代码预览

图像程序代码

............\demo_cmplin.m

............\demo_lin.m

............\demo_nldif.m

............\diffusion.m

............\gauss.m