使用GPU计算来加速神经网络训练我要分享

Using GPU to accelerate neural network training

GPU加速 卷积神经 卷积-神经网络 GPU

关注次数: 436

下载次数: 2

文件大小: 2246KB

代码分类: 智能算法

开发平台: matlab

下载需要积分: 1积分

版权声明:如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

代码描述

中文说明:

卷积神经网络的GPU实现。使用GPU计算来加速神经网络训练。


English Description:

GPU implementation of convolutional neural network. GPU is used to accelerate the neural network training.


代码预览

convlutional_network_GPU

........................\demo

........................\....\demoMLCNN.m

........................\MaxPooling

........................\..........\.cproject

........................\..........\.project

........................\..........\MaxPooling.cpp

........................\..........\MaxPooling.m

........................\..........\MaxPooling.mexmaci64

........................\..........\MaxPooling.mexw64

........................\..........\MaxPooling.m~

........................\..........\htm" target=_blank>README

........................\models

........................\......\mlcnn.m

........................\readme.txt

........................\startLearning.m

........................\testData2.mat

........................\testLabels2.mat

........................\trainData2.mat

........................\trainLabels2.mat

........................\utils

........................\.....\checkMLNNGradients.m

........................\.....\checkNNGradients.m

........................\.....\dataProcessing.m

........................\.....\dataProcessing2.m

........................\.....\gpuDistribute.m

........................\.....\gpuGather.m

........................\.....\loadData.m

........................\.....\maxPooling.m

........................\.....\medalConstants.m

........................\.....\myScatter.m

........................\.....\notDefined.m

........................\.....\preProcessData.m

........................\.....\sc.m

........................\.....\sigmoid.m

........................\.....\softMax.m

........................\.....\softRect.m

........................\.....\subplottight.m