中文说明:
基于matlab平台实现的数字识别,增加的GUI界面可以直接手写数字进行识别
English Description:
Based on Matlab Platform to achieve the number of recognition, the Gui interface can be directly handwritten number recognitionBased on Matlab Platform to achieve the number of recognition, the Gui interface can be directly han
关注次数: 498
下载次数: 0
文件大小: 14.3 MB
中文说明:
基于matlab平台实现的数字识别,增加的GUI界面可以直接手写数字进行识别
English Description:
Based on Matlab Platform to achieve the number of recognition, the Gui interface can be directly handwritten number recognitionDigitalIdentification-master
FeatureBlock.m
GUI_Croction
GUI_Croction\COG.m
GUI_Croction\FeatureBlock.m
GUI_Croction\QuadraticSVM.mat
GUI_Croction\Quadruple.m
GUI_Croction\SumColor.m
GUI_Croction\TurncationTime.m
GUI_Croction\gui3_test.fig
GUI_Croction\gui3_test.m
GUI_Croction\input.bmp
QuadraticSVM.m
Quadruple.m
README.md
SumColor.m
TurncationTime.m
data
data\t10k-images.idx3-ubyte
data\t10k-labels.idx1-ubyte
data\train-images.idx3-ubyte
data\train-labels.idx1-ubyte
embedded_mathwork.m
image_get.m
ver 0.83
ver 0.83\@cnn
ver 0.83\@cnn\adapt_dw.m
ver 0.83\@cnn\calcMCR.m
ver 0.83\@cnn\calchx.m
ver 0.83\@cnn\calcje.m
ver 0.83\@cnn\check_finit_dif.m
ver 0.83\@cnn\cnn.m
ver 0.83\@cnn\cnn_size.m
ver 0.83\@cnn\cutrain.m
ver 0.83\@cnn\init.m
ver 0.83\@cnn\sim.m
ver 0.83\@cnn\subsasgn.m
ver 0.83\@cnn\subsref.m
ver 0.83\@cnn\train.m
ver 0.83\FeatureBlock.m
ver 0.83\QuadraticSVM.mat
ver 0.83\SumColor.m
ver 0.83\back_conv2.m
ver 0.83\back_subsample.m
ver 0.83\changelog.txt
ver 0.83\changelog.txt~
ver 0.83\cnet.mat
ver 0.83\cnet_tool.m
ver 0.83\cnn2singlestruct.m
ver 0.83\cnn_gui.fig
ver 0.83\cnn_gui.m
ver 0.83\cucalcMCR.m
ver 0.83\cutrain_cnn.m
ver 0.83\fastFilter2.m
ver 0.83\hResultText.m
ver 0.83\license.txt~
ver 0.83\mse.m
ver 0.83\preproc_data.m
ver 0.83\preproc_image.m
ver 0.83\purelin.m
ver 0.83\rand_std.m
ver 0.83\readMNIST.m
ver 0.83\readMNIST_image.m
ver 0.83\readme.txt
ver 0.83\rot180.m
ver 0.83\singlestruct2cnn.m
ver 0.83\subsample.m
ver 0.83\t10k-images.idx3-ubyte
ver 0.83\t10k-labels.idx1-ubyte
ver 0.83\tansig_mod.m
ver 0.83\test_dgt.m
ver 0.83\train_cnn.m