基于matlab平台实现的数字识别,增加的GUI界面可以直接手写数字进行识别我要分享

Based on Matlab Platform to achieve the number of recognition, the Gui interface can be directly han

数字识别 GUI界面 手写数字识别

关注次数: 498

下载次数: 0

文件大小: 14.3 MB

代码分类: GUI设计

开发平台: matlab

下载需要积分: 8积分

版权声明:如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

代码描述

中文说明:

基于matlab平台实现的数字识别,增加的GUI界面可以直接手写数字进行识别


English Description:

Based on Matlab Platform to achieve the number of recognition, the Gui interface can be directly handwritten number recognition


代码预览

DigitalIdentification-master

FeatureBlock.m

GUI_Croction

GUI_Croction\COG.m

GUI_Croction\FeatureBlock.m

GUI_Croction\QuadraticSVM.mat

GUI_Croction\Quadruple.m

GUI_Croction\SumColor.m

GUI_Croction\TurncationTime.m

GUI_Croction\gui3_test.fig

GUI_Croction\gui3_test.m

GUI_Croction\input.bmp

QuadraticSVM.m

Quadruple.m

README.md

SumColor.m

TurncationTime.m

data

data\t10k-images.idx3-ubyte

data\t10k-labels.idx1-ubyte

data\train-images.idx3-ubyte

data\train-labels.idx1-ubyte

embedded_mathwork.m

image_get.m

ver 0.83

ver 0.83\@cnn

ver 0.83\@cnn\adapt_dw.m

ver 0.83\@cnn\calcMCR.m

ver 0.83\@cnn\calchx.m

ver 0.83\@cnn\calcje.m

ver 0.83\@cnn\check_finit_dif.m

ver 0.83\@cnn\cnn.m

ver 0.83\@cnn\cnn_size.m

ver 0.83\@cnn\cutrain.m

ver 0.83\@cnn\init.m

ver 0.83\@cnn\sim.m

ver 0.83\@cnn\subsasgn.m

ver 0.83\@cnn\subsref.m

ver 0.83\@cnn\train.m

ver 0.83\FeatureBlock.m

ver 0.83\QuadraticSVM.mat

ver 0.83\SumColor.m

ver 0.83\back_conv2.m

ver 0.83\back_subsample.m

ver 0.83\changelog.txt

ver 0.83\changelog.txt~

ver 0.83\cnet.mat

ver 0.83\cnet_tool.m

ver 0.83\cnn2singlestruct.m

ver 0.83\cnn_gui.fig

ver 0.83\cnn_gui.m

ver 0.83\cucalcMCR.m

ver 0.83\cutrain_cnn.m

ver 0.83\fastFilter2.m

ver 0.83\hResultText.m

ver 0.83\license.txt~

ver 0.83\mse.m

ver 0.83\preproc_data.m

ver 0.83\preproc_image.m

ver 0.83\purelin.m

ver 0.83\rand_std.m

ver 0.83\readMNIST.m

ver 0.83\readMNIST_image.m

ver 0.83\readme.txt

ver 0.83\rot180.m

ver 0.83\singlestruct2cnn.m

ver 0.83\subsample.m

ver 0.83\t10k-images.idx3-ubyte

ver 0.83\t10k-labels.idx1-ubyte

ver 0.83\tansig_mod.m

ver 0.83\test_dgt.m

ver 0.83\train_cnn.m