说明:bagging 集成算法描述:Bagging是一种把多个不同的弱学习器训练成一个强学习器的集成学习方法Bagging是一种并行训练过程,通过分类测试样本的有放回抽样,获取多个分类测试子样本,通过分类子样本训练T个基分类器,当对每一个实例进行分类时,分别调用这T个基分类器,得到T个结果,最后对分类问题...
说明:支持向量机 (SVM) 第一次听到于 1992 年,由宝狮、 尺管和在柯尔特-92 Vapnik 介绍。支持向量机 (支持向量机)是一套用于分类和回归的相关监督的学习方法。他们属于一个家庭的广义线性分类器。另一项条款,在的支持向量机 (SVM) 是一个分类和回归的预测工具,使用机器学习理论来最大化同...
说明:DTW是较早的一种模式匹配和模型训练技术,它应用动态规划的思想成功解决了语音信号特征参数序列比较时时长不等的难题,在孤立词语音识别中获得了良好性能。虽然HMM模型和ANN在连续语音大词汇量语音识别系统优于DTW,但由于DTW算法计算量较少、无需前期的长期训练,也很容易将DTW算法移植到单片机、DSP...
说明:应用背景许多算法的存在,目的是解决稀疏表示字典学习问题。然而,没有全面的测试和基准测试,这些算法的存在,在与已知的字典稀疏表示的问题。主 ;这项工作的驱动力是一个工具箱,如字典学习 Sparco的缺乏;问题。认识到这样一个工具箱的社区的需要,我们设计出 ;smallbox-a MATLAB工具箱。...
说明:人工蜂群算法(ABC)作为一种模拟蜜蜂蜂群智能搜索行为的生物智能优化算法, 2008 年引入国内, 是一种新型的全局寻优算法,能够解决计算机科学、管理科学、控制工程等领域的几乎全部全局优化问 题。 又由于人工蜂群算法(ABC)控制参数少、易于实现、计算简洁,从而成为学术界研究的焦点。 ABC 算...