说明:对于一个两类分类问题,当n=100时候,用mvnrnd()函数随机产生两类样本;每一类的样本容量不小于100;2)设计最大似然估计算法对两类类条件概率密度函数进行估计;3)设计非参数估计算法对两类的类条件概率密度进行估计(任选Parzen窗法或kn-近邻法之一),并分析样本数量、窗宽、k等因素对概率...
说明:广义高斯概率分布函数的指数估计,包括矩估计和最大似然估计,并对这两种估计进行了比较
说明:求解参数估计的常用算法——EM,即期望最大化算法,用于代替样本量不完全时的极大似然估计算法。
说明:最大似然法(Maximum Likelihood,ML)也称为最大概似估计,也叫极大似然估计,是一种具有理论性的点估计法,此方法的基本思想是:当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大,而不是像最小二乘估计法旨在得到使得模型能最好地拟合样本...