说明:模糊聚类是一种重要数据分析和建模的无监督方法.在FCM算法中,考虑到样本矢量中各维特征对模式分类的不同影响,本文提出一种优化特征加权的模糊聚类算法,该算法利用主成分分析法提取主要特征向量并根据其对方差的贡献率不同赋予相应权重进行聚类分析.
说明:根据实验数据设计K均值聚类分析分类器,实验数据采用遥感彩色图像,以图像的所有象素为样本集,每一象素点的R、G、B值作为其特征向量。1)选择合适的类别数K和初始聚类中心。2)选择距离测度。3)设计迭代中止条件,或人为设定迭代次数。
说明:聚类分析的目的是将一组给定的数据分成子集,这样这些子集代表数据本身的某些相似之处。人类的眼睛立刻认识到两个几何形状、 两个半-月亮,并能够将数据划分为两个群集,在那里在同一点群集属于同一半月形。然而,一般来说,和特别是来自现实世界的问题的数据,是不可能只是看看数据,所以我们需要依靠算法来做到这一点。